

Efficient Chromium(II)-Catalyzed Cross-Coupling Reactions between Csp² Centers

Andreas K. Steib,[†] Olesya M. Kuzmina,[†] Sarah Fernandez,[†] Dietmar Flubacher,[‡] and Paul Knochel^{*,†}

[†]Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany

*Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland

Supporting Information

ABSTRACT: Low-toxicity chromium(II) chloride catalyzes at 25 °C within minutes the coupling reactions of various (hetero)arylmagnesium reagents with N-heterocyclic halides, aromatic halogenated ketones or imines, and alkenyl iodides. Remarkably, much lower amounts of homo-coupling side products are obtained compared to related iron, cobalt, or manganese cross-couplings.

Palladium- and nickel-catalyzed cross-coupling reactions between aromatic and heterocyclic groups are well established and have found many applications.¹ However, the prohibitively high price of palladium and the toxicity associated with nickel led to the search for alternative metals for these cross-couplings. For example, copper-catalyzed cross-couplings have been shown to be efficient for C-N bond formation.² Also, iron,³ cobalt,⁴ and manganese⁵ have proven to be possible alternatives for palladium and nickel. However, the scope of such Csp²-Csp² cross-couplings is still limited, as these reactions often produce substantial amounts of homo-coupling side products.⁶ In the search for alternative metal catalysts having an acceptably low toxicity, we have examined the potential use of chromium salts.⁷ Although Cr^{VI} is highly toxic (ORL-RAT $LD_{50} = 50-150 \text{ mg/kg}$), Cr^{II} has a much lower toxicity (ORL-RAT $LD_{50} = 1870$ mg/kg), also compared to other metals: ORL-RAT LD_{50} for NiCl₂ = 105 mg/kg, for $PdCl_2 = 2700 mg/kg$, for $CoCl_2 = 766 mg/kg$, for $MnCl_2$ =1480 mg/kg, and for $FeCl_2 = 450 \text{ mg/kg}$.

Preliminary experiments showed that chromium-catalyzed cross-couplings between Csp² centers proceed quite smoothly and lead to significantly lower amounts of homo-coupling side products compared to iron or cobalt.9 Thus, the reaction of 2chloropyridine (1a, 1.0 equiv) with PhMgCl (2a, 2.3 equiv) in THF in the presence of 3% CrCl₂ (purity 99.99%) is complete within 15 min at 25 °C, affording the desired cross-coupling product 3a in 90% yield.¹⁰ Gas chromatographic analysis of the crude reaction mixture indicated that less than 1% of the homocoupling product (biphenyl) is obtained (Scheme 1). Performing the same reaction with 3% FeBr3 or 3% CoCl2 under optimized conditions leads to about 15% of the homo-coupling product.¹¹ Solvent screening (THF, n-hexane, toluene, and tBuOMe) showed that THF was the optimal solvent. Optimization of the reagent stoichiometry indicated that only a small excess of Grignard reagent (1.2 equiv) was required. For all subsequent reactions, standard-grade CrCl₂ (purity 97%) was used, since no difference with $CrCl_2$ (purity 99.99%) was

Scheme 1. Chromium-Catalyzed Cross-Coupling between 2-Chloropyridine (1a) and PhMgCl (2a)

observed. Also, performing the cross-coupling with 5% MnCl₂ leads, under optimum conditions, to only 58% yield of 3a,¹ compared to 90% yield obtained with 3% CrCl₂.

The reaction scope of this new cross-coupling proved to be quite broad. Thus, a range of N-heterocyclic chlorides and bromides can be readily used (Table 1). PhMgCl (2a) also undergoes a smooth cross-coupling with 2-bromo-3-(but-3-en-1-yl)pyridine (1b; 25 °C, 15 min), leading to the 2,3disubstituted pyridine 3b in 95% yield (entry 1). Interestingly, no radical cyclization product is observed in this cross-coupling (similar iron and cobalt cross-couplings produce 20% of radical cyclization product).^{11b} Both electron-rich and electron-poor Grignard reagents can be used for such cross-couplings.¹³ Thus, the sterically hindered bromopyridine 1c reacts with 4-(N,Ndimethylamino)phenylmagnesium bromide (2b) within 1.5 h at 25 °C, producing the 2,3-diarylated pyridine 3c (80% yield; entry 2). Also, the electron-poor Grignard reagent 2c reacts with 2-bromo-3-chloropyridine (1d) in 15 min at 25 °C, leading to the pyridine 3d in 76% yield (entry 3). Similar crosscoupling performed with 3% of FeBr₃ gives only traces of product and significant amounts of homo-coupling. 2-Chloro-5fluoropyridine (1e) also undergoes the cross-coupling reaction with the sensitive ester-substituted Grignard reagent 2d to give the pyridine 3e in 66% yield (entry 4). Further N-heterocyclic halides, such as 2-chloroquinoline (1f) and 4-chloroquinoline (1g), react well with Grignard reagents 2e and 2b, affording the expected products 3f and 3g (74-78%; entries 5 and 6). In contrast, the corresponding iron-catalyzed cross-coupling with the 4-chloroquinoline 1g fails, indicating that this Cr(II)catalyzed cross-coupling may have a broader reaction scope than the corresponding Fe- and Co-catalyzed cross-couplings. Halogenated diazenes, such as the 2-chloropyrimidines 1h,i and the 2-chloropyrazine 1j, rapidly react with the magnesium organometallics 2f-h to provide the substituted diazenes 3h-j (71-85%; entries 7-9).

ACS Publications © 2013 American Chemical Society

Received: September 2, 2013 Published: September 23, 2013

Table 1. Room-Temperature Cr-Catalyzed Cross-Coupling Reactions between N-Heterocyclic Halides and Arylmagnesium Reagents

Remarkably, 2-halogenated aromatic ketones also undergo the chromium-catalyzed cross-coupling at room temperature within 15 min to 2 h (Table 2).¹⁴ Thus, 2-chlorobenzophenone (4a) reacts with a range of aryl- and heteroarylmagnesium Table 2. Cr-Catalyzed Cross-Coupling Reactions between 2-Chlorobenzophenone (4a) and Phenylmagnesium Reagents

^{*a*}Isolated yields after purification by flash column chromatography. ^{*b*}0.7 equiv of 2j was used. ^{*c*}Reaction run at 50 °C for 2 h.

reagents (2b,c,i-k), yielding the corresponding polyfunctional ketones 5a-e (71–94%; entries 1–5 of Table 2).

Interestingly, the (2-bromophenyl)(6-chloropyridin-3-yl)methanone (4b) reacts with the Grignard reagent 2a with complete regioselectivity (no chloride substitution occurs) and gives the pyridyl ketone 5f in 72% yield (Scheme 2).

Heterocyclic ketones, such as **4c**, also cross-couple well with 3-thienylmagnesium chloride **2l**, affording the new ketone **5g** in 90% yield (Scheme 2). These reactions show a remarkable functional group tolerance, since ester, nitriles, and ketones are compatible with this Cr-catalyzed cross-coupling.¹⁵

Interestingly, the imine-protected 2-chlorobenzaldehyde 6 reacts readily with various Grignard reagents (2a,h,l) at 25 °C. Acidic workup provides the aldehydes 7a-c in 69–84% yield (Scheme 3). The presence of the sulfur-containing Grignard reagent 2l extends considerably the reaction rate, and 16 h reaction time is required to complete the cross-coupling leading to 7c. Thus, this cross-coupling constitutes a simple way for functionalizing aromatic aldehydes in the *ortho*-position.

Scheme 2. Cr-Catalyzed Cross-Coupling Reactions between Heteroaryl-Substituted Ketones and Grignard Reagents

Scheme 3. Cr-Catalyzed Cross-Coupling Reactions between Imine-Protected Aldehyde 6 and Grignard Reagents

Finally, alkenyl iodides, such as (E or Z)-8, also undergo a stereoselective chromium-catalyzed arylation with a range of aryl Grignard reagents (2b,g,h,m), affording in all cases the functionalized styrenes 9a-e in 69-80% yield (Scheme 4). For

Scheme 4. Cr-Catalyzed Cross-Coupling Reactions between Alkenyl Iodide (E or Z)-8 and Grignard Reagents 2

the alkenyl iodide (*E*)-8, the reactions are completed in 15 min at 25 °C (*E*:*Z* ratio >99:1), whereas a reaction time of 14 h is required for the coupling of (*Z*)-8 (*Z*:*E* ratio = 99:1). Since no loss of stereochemistry is observed, a single electron-transfer mechanism, implying radical intermediates, can be excluded, confirming the result obtained with the radical clock substrate (1b, entry 1 of Table 1).

In conclusion, we have reported a new transition-metalcatalyzed cross-coupling reaction requiring only 3% of chromium(II) chloride. This metal halide, as indicated in the introduction, has a moderate acute toxicity. Thus, major international suppliers classify chromium(II) chloride as a lowtoxicity chemical, in the same category as iron(II) chloride. Its price is comparable to the price of CoCl₂ or FeCl₂. Remarkably, these ligand-free cross-couplings proceed rapidly (usually less than 2 h) at 25 °C, require only 1.2–1.5 equiv of Grignard reagent, and produce significantly less homo-coupling side products than the corresponding Fe- or Co-catalyzed cross-coupling reactions. $CrCl_2$ displays also a higher reactivity compared to similar Mn-catalyzed cross-couplings.

Based on all these features, chromium(II)-catalyzed crosscoupling should become attractive for research and development. Further explorations are under way in our laboratories.

ASSOCIATED CONTENT

Supporting Information

Full experimental details; $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

paul.knochel@cup.uni-muenchen.de

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) ERC Grant Agreement No. 227763. We are grateful to BASF SE and Rockwood Lithium GmbH for the generous gift of chemicals. O.M.K. thanks Novartis Pharma AG for financial support.

REFERENCES

(1) (a) Cross-Coupling reactions. A Practical Guide; Miyaura, N., Ed.; Springer: Berlin, 2002. (b) Metal-Catalyzed Cross-Coupling Reactions; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004. (c) Organotransition Metal Chemistry; Hartwig, J. F., Ed.; University Science Books: Sausalito, CA, 2010.

(2) (a) Martin, R.; Rodriguez Rivero, M.; Buchwald, S. L. Angew. Chem., Int. Ed. 2006, 45, 7079. (b) Shafir, A.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 8742. (c) Brasche, G.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 1932. (d) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2008, 47, 3096. (e) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954. (f) Evano, G.; Toumi, M.; Coste, A. Chem. Commun. 2009, 4166. (g) Liu, Z.-J.; Vors, J.-P.; Gesing, E. R. F.; Bolm, C. Adv. Synth. Catal. 2010, 352, 3158. (h) Gati, W.; Couty, F.; Boubaker, T.; Rammah, M. M.; Rammah, M. B.; Evano, G. Org. Lett. 2013, 15, 3122.

(3) (a) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217. (b) Shinokuo, H.; Oshima, K. Eur. J. Org. Chem. 2004, 2081. (c) Yorimitsu, H.; Oshima, K. Pure Appl. Chem. 2006, 78, 441. (d) Iron Catalysis in Organic Chemistry: Reactions and Applications; Plietker, B., Ed.; Wiley-VCH: Weinheim, 2008. (e) Enthaler, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2008, 47, 3317. (f) Sherry, B. D.; Fürstner, A. Acc. Chem. Res. 2008, 41, 1500. (g) Bolm, C. Nature Chem 2009, 1, 420. (h) Fürstner, A. Angew. Chem., Int. Ed. 2009, 48, 1364. (i) Czaplik, W. M.; Mayer, M.; Cvengros, J.; Jacobi von Wangelin, A. ChemSusChem 2009, 2, 396.

(4) (a) Gosmini, C.; Bégouin, J.-M.; Moncomble, A. Chem. Commun.
2008, 28, 3221. (b) Hess, W.; Treutwein, J.; Hilt, G. Synthesis 2008, 3537. (c) Gosmini, C.; Moncomble, A. Isr. J. Chem. 2010, 50, 568. (d) Cahiez, G.; Moyeux, A. Chem. Rev. 2010, 110, 1435.

(5) (a) Cahiez, G.; Duplais, C.; Buendia, J. Chem. Rev. 2009, 109, 1434. (b) The Chemistry of Organomanganese Compounds; Rappoport, Z., Marek, I., Eds.; Wiley: Chichester, UK, 2011. (c) Khusnutdinov, R. I.; Bayguzina, A. R.; Dzhemilev, U. M. Russ. J. Org. Chem 2012, 48, 309.

(6) For Fe-, Co-, and Mn-catalyzed homocoupling reactions, see:
(a) Kharasch, M. S.; Fields, E. K. J. Am. Chem. Soc. 1941, 63, 2316.
(b) H. Felkin, H.; Meunier, B. J. Organomet. Chem. 1978, 146, 169.

Journal of the American Chemical Society

(c) Nagano, T.; Hayashi, T. Org. Lett. 2005, 7, 491. (d) Cahiez, G.;
Chaboche, C.; Mahuteau-Betzer, F.; Ahr, M. Org. Lett. 2005, 7, 1943.
(e) Liu, W.; Lei, A. Tetrahedron Lett. 2007, 49, 610. (f) Cahiez, G.;
Moyeux, A.; Buendia, J.; Duplais, C. J. Am. Chem. Soc. 2007, 129, 13788. (g) Mayer, M.; Czaplik, W. M.; Jacobi von Wangelin, A. Synlett 2009, 2919. (h) Kiefer, G.; Jeanbourquin, L.; Severin, K. Angew. Chem., Int. Ed. 2013, 52, 6302.

(7) For key coupling reactions using chromium(II) salts, see: (a) Okude, Y.; Hirano, S.; Hiyama, T.; Nozaki, H. J. Am. Chem. Soc. 1977, 99, 3179. (b) Okude, Y.; Hiyama, T.; Nozaki, H. Tetrahedron Lett. 1977, 3829. (c) Takai, K.; Kimura, K.; Kuroda, T.; Hiyama, T.; Nozaki, H. Tetrahedron Lett. 1983, 24, 5281. (d) Jin, H.; Uenishi, J.-I.; Christ, W. J.; Kishi, Y. J. Am. Chem. Soc. 1986, 108, 5644. (e) Takai, K.; Tagashira, M.; Kuroda, T.; Oshima, K.; Utimoto, K.; Nozaki, H. J. Am. Chem. Soc. 1986, 108, 6048. (f) Matsubara, S.; Horiuchi, M.; Takai, K.; Utimoto, K. Chem. Lett. 1995, 259. (g) Fürstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 12349. (h) Takai, K.; Matsukawa, N.; Takahashi, A.; Fujii, T. Angew. Chem., Int. Ed. 1998, 37, 152. (i) Fürstner, A. Chem. Rev. 1999, 99, 991. (j) Takai, K.; Toshikawa, S.; Inoue, A.; Kokumai, R. J. Am. Chem. Soc. 2003, 125, 12990. (k) Takai, K.; Toshikawa, S.; Inoue, A.; Kokumai, R.; Hirano, M. J. Organomet. Chem. 2007, 692, 520. (1) Murakami, K.; Ohmiya, H.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9, 1569. (m) Holzwarth, M. S.; Plietker, B. ChemCatChem 2013, 5, 1650.

(8) According to IFA (Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung), July 2013.

(9) Nakamura et al. reported the use of FeF_3 and CoF_2 in combination with NHC ligands. This protocol suppresses the formation of homo-coupling side products: (a) Hatakeyama, T.; Nakamura, M. J. Am. Chem. Soc. **2007**, 129, 9844. (b) Hatakeyama, T.; Hashimoto, S.; Ishizuka, K.; Nakamura, M. J. Am. Chem. Soc. **2009**, 131, 11949.

(10) This cross-coupling may also be performed using $CrCl_3$ instead of $CrCl_2$, although a significant yield drop is observed (74% instead of 90%); therefore, $CrCl_2$ has been used in all experiments.

(11) (a) Kuzmina, O. M.; Steib, A. K.; Flubacher, D.; Knochel, P. Org. Lett. **2012**, 14, 4818. (b) Kuzmina, O. M.; Steib, A. K.; Markiewicz, J. T.; Flubacher, D.; Knochel, P. Angew. Chem., Int. Ed. **2013**, 52, 4945.

(12) Rueping, M.; Ieawsuwan, W. Synlett 2007, 247.

(13) For the preparation of Grignard reagents, see: Piller, F. M.; Metzger, A.; Schade, M. A.; Haag, B. A.; Gavryushin, A.; Knochel, P. *Chem.—Eur. J.* **2009**, *15*, 7192.

(14) For related Mn-catalyzed reactions, see: (a) Cahiez, G.; Lepifre, F.; Ramiandrasoa, P. *Synthesis* **1999**, 2138. (b) Cahiez, G.; Luart, D.; Lecomte, F. *Org. Lett.* **2004**, *6*, 4395.

(15) For preparation of Grignard reagents 2i,j,l, see: (a) Krasovskiy, A.; Knochel, P. Angew. Chem., Int. Ed. 2004, 43, 3333. (b) Krasovskiy, A.; Straub, B. F.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 159.